PII: S0040-4020(96)00464-4

Brasilinolide A, New Immunosuppressive Macrolide from Actinomycete *Nocardia brasiliensis*

Hideyuki Shigemori, Yasushi Tanaka^a, Katsukiyo Yazawa^a, Yuzuru Mikami^a, and Jun'ichi Kobayashi*

Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060, Japan and ^aResearch Center for Pathogenic Fungi and Microbial Toxicoses, Chiba University, Chiba 260, Japan

Abstract: A new 32-membered macrolide, brasilinolide A (1), with potent immunosuppressive and antifungal activity was isolated from the cultured broth of the actinomycete *Nocardia brasiliensis* IFM 0406 and the structure elucidated on the basis of spectroscopic data and chemical means. Copyright © 1996 Elsevier Science Ltd

In our continuing search for bioactive substances from microorganisms, we isolated a new 32-membered macrolide, brasilinolide A (1), possessing potent immunosuppressive and antifungal activity from the cultured broth of the actinomycete *Nocardia brasiliensis* IFM 0406. In this paper we describe the isolation and structure elucidation of 1.

The supernatant of the fermentation broth of *N. brasiliensis* IFM 0406 was subjected to a Diaion HP-20 column and antifungal fractions against *Aspergillus niger* were purified by a silica gel column (CHCl₃/MeOH) followed by reversed-phase HPLC (MeCN/H₂O, 1:1) to give brasilinolide A (1).

HRFABMS analysis of brasilinolide A (1), a colorless amorphous solid ($[\alpha]^{28}D$ -27.4°), revealed the molecular formula to be C₅₇H₉₈O₂₄ [*m/z* 1189.6403 (M+Na)⁺, Δ -5.7 mmu]. IR absorptions at 3400, 1730, and 1700 cm⁻¹ indicated the presence of hydroxy, ester, and α , β -unsaturated ester groups.

Fig. 1 Structure of brasilinolide A (1) and partial structural units (a - e) based on the ¹H-¹H-COSYand selected HMBC and HMQC-HOHAHA correlations

Table 1. ¹H and ¹³C NMR Data of Brasilinolide A (1) in CD₃OD

position	on ¹ H	a	J(Hz)	13Ca	HMBC (¹ H)	positi	on ¹ I	1	J(Hz)	¹³ C	HMBC (¹ H)
1				169.29 s	2,3,31	29	2.78	dd	6.3, 2.0	61.21 d	31, 39
2 3	6.05	d	15.6	125.44 d	4	30	1.64			41.22 d	29, 31, 39
3	7.11	dt	15.6, 7.3	148.99 d	2	31	5.36	d	10.3	76.01 d	33, 39, 40
4	2.52	m		42.01 t	2, 3	32	1.94	m		39.34 d	31, 33, 40
	2.45	m				33	3.42	m		78.57 d	31, 32, 40, 41
5	4.00	m		70.52 d	3, 4, 6	34	1.88	m		36.82 d	33, 35, 41
6	1.67	m		46.75 t		35	3.51	m		80.40 d	33, 41, 42
7	4.05	m		68.95 d	6, 8	36	2.01	m		41.22 d	35, 42, 43
8	1.56	m		45.89 t		37	4.09	m		75.20 d	35, 42, 43, 1'
9	3.82	m		70.20 d	8, 10	38	0.96		7.0	15.27 q	
10	1.54			37.00 t		39	1.11		7.0	15.22 q	29, 31
11	1.67			31.71 t	9, 13, 38	40	0.89		7.0	10.23 q	31, 32
12	1.64	m		41.22 d	38	41	0.94		7.0	5.89 q	34
13	3.82	m		71.98 d	14b, 38	42	0.86	d	7.0	10.94 q	36, 37
	1.88			45.74 t	16	43	1.16		7.0	16.46 q	
(b)	2.00	m				1'	5.04			98.36 d	5'
15				100.59 s	14a, 14b, 19	2'(a)	1.76	m		31.71 t	4 '
16	3.39	d	9.3	77.89 d	17		2.14	m			
17	3.93	m		70.52 d	16, 18a, 18b	3'	5.15	m		72.59 d	1', 2'a, 2'b, 4'
18(a)	1.22	m		41.83 t		4'	3.77	m		69.90 d	2'a, 5', 6'
(b)	1.90	m				5'	4.07			68.14 d	1', 4'
19	4.20	m		66.79 d	18b, 20	6'	1.24	d	7.0	17.85 q	5'
20	1.57	m		41.13 t		1"				172.44 s	3 '
21	4.17	m		66.92 d	20, 22	2"	1.91			30.93 t	
22	1.94	m		45.59 t		3"	1.41	m		33.54 t	
23	3.82	m		70.20 d	22	4"	1.36	m		24.40 t	5"
24	1.50	m		39.78 t		5"	0.95	t	7.0	15.22 q	
25	1.69	m		23.48 t		l "'				173.03 s	23
26	1.45	m		34.71 t		2""	3.39b	s		46.31 t	
27	3.44			71.82 d	28	3"'	•			175.62 s	
28	2.83		1 2.0	64.63 d							

a) δ in ppm b) in DMSO- d_6

UV absorption at 214 (ε 14900) nm also supported the presence of α , β -unsaturated ester group. Interpretation of ¹H and ¹³C NMR data (Table 1) of 1 in CD₃OD indicated the presence of one carboxyl, three ester carbonyls, one disubstituted olefin, one hemiketal carbon, one hemiacetal carbon, nineteen oxymethines, five methines, seventeen sp³ methylenes, and eight methyls. Since five out of nine unsaturations were thus accounted for, compound 1 was inferred to contain four rings (viz., lactone, epoxide, ether ring, and carbohydrate ring each). The presence of a malonyl group was elucidated from fragmentation ions at m/z 1122 (M-CO₂)⁻, 1080 (M-COCH₂CO₂)⁻, and 1064 (M-O₂CCH₂CO₂)⁻ in the negative FABMS/MS and ¹³C NMR data [δ_C 175.62 (C-3"') and 173.03 (C-1"')]. Detailed analysis of the ¹H-¹H COSY spectrum of 1 revealed connectivities of C-2 ~ C-9 (a), C-11 ~ C-14 (b), C-16 ~ C-23 (c), C-27 ~ C-37 (d), and C-1' ~ C-6' (e) (Fig. 1). ¹³C NMR signals for sp³ methylene carbons located between hydroxy-bearing methines (viz., 2-position of 1,3-diol) were observed at δ_C 41 ~ 47, whereas sp³ methylene carbons between a hydroxy-bearing methine and another sp³ methylene resonated at δ_C 34 ~ 40. The location of secondary hydroxyls and methyl groups was elucidated mainly by the HMBC and HMQC-HOHAHA² correlations (Fig. 1). In the ¹³C NMR spectrum of 1 measured in CD₃OH, eleven oxymethine

Brasilinolide A 9033

Fig. 2 NOESY correlations and proton coupling of tetrahydropyran ring (C-15-C-19) in 1

Fig. 3 NOESY correlations of 2-deoxyfucopyranose moiety (C-1'-C-6') in 1

carbon resonances (C-5, C-7, C-9, C-13, C-16, C-17, C-21, C-27, C-33, C-35, and C-4') were slightly shifted $(0.1 \sim 0.2 \text{ ppm})$ as compared with those in CD₃OD, indicating that hydroxy groups were attached at these carbons.

The presence of an α , β -unsaturated ester was revealed by the proton signals at δ_H 6.05 (H-2) and 7.11 (H-3) (J = 15.6 Hz, trans-oriented) and HMBC correlations for H-2/C-1 (δ_C 169.29) and H-3/C-1. Units a and b were connected through an sp³ methylene (C-10) by HMQC-HOHAHA correlations for H-9/C-10 and H-9/C-11. HMBC correlations of H₃-38 to C-11, C-12, and C-13 indicated that a methyl group was attached at C-12. The presence of a hydroxy group at C-13 (δ_C 71.98) was assignable from a HMBC cross-peak for H-14b to C-13. The hemiketal carbon (C-15) was elucidated to be adjacent to C-14 by HMBC correlations for H-14a/C-15 and H-14b/C-15, and was connected to C-16 (c) by an HMBC cross-peak for H-16/C-14. The HMBC correlation of H-19 to C-15 revealed the presence of a tetrahydropyran ring bearing a hydroxyl group at C-16 (δ_C 77.89) and C-17 (δ_C 70.52). A chair form of the tetrahydropyran ring was assignable from NOESY cross-peaks for H-16/H-18a, H-17/H-18b, H-17/H-19, and H-18b/H-19 (Fig. 2). The hydroxy groups at C-16 and C-17 were assigned to be equatorial on the basis of the coupling constant ($J_{16,17} = 9.3 \text{ Hz}$). A NOESY correlation between H-13 and H-16 indicated that the hydroxy group at C-15 was assigned to be axial. HMBC correlations of H-19 and H-23 to C-21 $(\delta_C 66.92)$ revealed that a hydroxy group was attached at C-21. The malonyl group was attached at C-23 based on HMBC correlations of H-23/C-1". Connection between units c and d was substantiated by HMQC-HOHAHA correlations of both H-23 and H-27 to C-24, C-25, and C-26. The large C-H couplings observed for the two oxymethine carbons [$\delta_{\rm C}$ 64.63 (C-28, $J_{\rm CH}$ = 172 Hz) and 61.21 (C-29, $J_{\rm CH}$ = 174 Hz)] indicated the presence of an epoxide ring. The configuration of the 28,29-epoxide was elucidated to be trans by the ${}^{1}H^{-1}H$ coupling constant ($J_{28,29} = 2.0 \text{ Hz}$). The oxymethine proton (δ_{H} 5.36) on C-31 showed an HMBC correlation to the ester carbonyl carbon (δ_C 169.29, C-1), which in turn showed HMBC correlations to H-2 and H-3. Thus, C-31 (d) and C-2 (a) were connected through the C-1 carbonyl to construct a 32-membered macrocyclic lactone ring.³ ¹H-¹H COSY and HMBC data implied that methyl groups were attached at C-30, C-32, C-34, C-36, and C-37. The sugar part (e) was connected to C-37 of the aglycone moiety by an HMBC correlation for H-1'/C-37 and NOESY correlations for H-1'/H-36 and H-1'/H-37. The carbohydrate moiety was elucidated to be 2-deoxyfucopyranose by NOESY correlations of H-1'/H-2'a, H-1'/H-2'b, H-2'a/H-3', H-3'/H-4', H-3'/H-5', and H-4'/H-5' (Fig. 3), and was firmly identified as 2-deoxyfucose by GC analysis of trimethylsilyl derivative of the methanolysis product of 1. The pentanovl group (C-1" ~ C-5") was attached at C-3' based on a HMBC correlation of H-3'/C-1". The

 α -glycosyl bond at C-1' was suggested from a broad singlet proton signal for H-1' in the ¹H NMR spectrum. Thus the structure of brasilinolide A was concluded to be 1.

Brasilinolide A (1) is a new 32-membered macrolide with a tetrahydropyran ring and a 2-deoxyfucopyranose from the broth of N. brasiliensis IFM 0406. Compound 1 exhibited potent immunosuppressive activity in mouse mixed lymphocyte assay and antifungal activity against Aspergillus niger (MIC, 3.13 μ g/mL). Detailed biological activities of 1 will be described elsewhere.

Experimental Section

General Methods. Optical rotations were determined on a JASCO DIP-370 polarimeter. UV and IR spectra were obtained on JASCO Ubest-35 and JASCO IR report-100 spectrometers, respectively. ¹H and ¹³C NMR spectra were recorded on JEOL EX-400 and Bruker ARX-500 and AMX-600 spectrometers. The 3.35 and 2.49 ppm resonances of residual CD₂HOD and DMSO-d₅, respectively, and 49.8 and 39.5 ppm of CD₃OD and DMSO-d₆, respectively, were used as internal references. FABMS spectra were obtained on a VG70-4SE spectrometer.

Cultivation. The voucher specimen (*Nocardia brasiliensis* IFM 0406) was deposited at the Center for Pathogenic Fungi and Microbial Toxicoses, Chiba University. Cultures of *N. brasiliensis* IFM 0406 were grown in the broth [glycerol (2.0%), polypepton (1.0%), and meat extract (0.5%) in H₂O, pH 7.0]. Cultures were incubated in a 150 L - jar fermentor at 32 °C for 4 days with stirring at 250 rpm and 150 L/min aeration rate and was centrifuged.

Extraction and Separation. The supernatant of the fermentation broth (150 L) was applied on a Diaion HP-20 column (15 x 100 cm) and washed with 2M NaCl aq. (40 L) and H₂O (40 L) and then eluted batchwise with MeOH/H₂O (1:4, 20 L) and MeOH (20 L). The active fractions against Aspergillus niger were lyophilized and was chromatographed on a silica gel column (5 x 50 cm) eluted with CHCl₃/MeOH (4:1). Active fractions were further purified by reversed-phase HPLC [Capcell pack C_{18} SG120, Shiseido Co. Ltd., 5 x 25 cm, flow rate: 20 mL/min, MeCN/H₂O (1:1)] to give brasilinolide A (1, 100 mg).

Brasilinolide A (1). A colorless amorphous solid; $[\alpha]^{28}_{\rm D}$ -27.4° (c 1.0, MeOH); IR (KBr) v_{max} 3400, 1740 (sh), 1700, 1640, and 1580 cm⁻¹; UV (MeOH) $\lambda_{\rm max}$ 214 (ε 14900) nm; ¹H and ¹³C NMR (see Table 1); FABMS (positive, *m*-nitrobenzyl alcohol matrix) *m/z* 1189 (M+Na)⁺; HRFABMS *m/z* 1189.6403 (M+Na)⁺, calcd for C₅₇H₉₈O₂₄Na, 1189.6460; HMBC correlations (see Table 1); NOESY correlations (CD₃OD, H/H): 2/4a, 2/4b, 3/4b, 3/5, 4a/5, 4b/6, 5/6, 6/7, 13/16, 16/18a, 17/18b, 17/19, 18a/18b, 18b/19, 27/28, 27/29, 29/30, 29/31, 29/39, 30/39, 31/32, 31/33, 31/39, 31/40, 32/33, 32/34, 33/34, 34/40, 34/35, 34/42, 35/36, 35/42, 35/43, 36/37, 36/1', 37/43, 37/1', 1'/2'a, 1'/2'b, 2'a/2'b, 2'a/3', 3'/4', 3'/5', and 4'/5'.

Analysis of Carbohydrate Moiety by GC. Brasilinolide A (1, 1.0 mg) was dissolved in 0.5 M HCl/MeOH (0.5 mL) and heated in a sealed tube at 65°C for 15h. After evaporation of the solvent by a stream of nitrogen, the residue was dissolved in pyridine (50 μ L) and treated with hexamethyldisilazane (10 μ L) and trimethylsilyl chloride (5 μ L) at room temperature for 30 min. Solvent was removed by a nitrogen stream and the residue dissolved in hexane was used for GC analysis [1.5% OV-17 glass column (3 mm x 2 m); N₂ as a carrier gas; the program rate: 90 - 200°C at 0.5°C/min] showing a peak at t_R 7.9 min, which corresponded to that of 2-deoxyfucose (7.9 min). The TMS/Me derivative of 2-deoxyfucopyranose4 showed the same retention time as that derived from 1.

Acknowledgements: We thank Professor S. Hashimoto (Hokkaido University) for his kind offer of 2-deoxyfucopyranose and Dr. T. Kosaka (Sankyo Co., Ltd.) for measurement of FABMS. This work was partly supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture of Japan.

References

- Kobayashi, J.; Mikami, S.; Shigemori, H.; Takao, T.; Shimonishi, Y.; Izuta, S.; Yoshida, S. Tetrahedron 1995, 51, 10487-10490.
- 2. Lerner, L.; Bax, A. J. Magn. Reson. 1986, 69, 375-380.
- 3. Sasaki, T.; Furihata, K.; Nakayama, H.; Seto, H.; Otake, N. Tetrahedron Lett. 1986, 27, 1603-1606.
- 4. Sabesan, S.; Neira, S. J. Org. Chem. 1991, 56, 5468-5472.